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Entropy of the Quantum Electromagnetic Field in
Static, Spherically Symmetric Dilaton Black
Holes
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The quantum correction to the entropy of four-dimensional nonextreme static,
spherically symmetric dilaton black holes arising from electromagnetic fields is
investigated by ’t Hooft’s “brick wall” model. The Garfinkle–Horowitz–
Strominger, Gibbons–Maeda, and Garfinkle–Horne dilaton black holes are
considered. It is shown that the one-loop quantum correction arising from the
electromagnetic fields is exactly twice that due to a massless scalar field. The
result agrees with that of the Schwarzschild and Reissner–Nordström black holes.

1. INTRODUCTION

Since Bekenstein and Hawking found that the black hole entropy is
proportional to the event horizon by comparing black hole physics with
thermodynamics, and since the discovery that black holes generate thermal
radiation [1–3] much effort has been directed at the study of the quantum
entropy of the black holes [4–22] in the hope that such study can shed light
on the problem of obtaining a statistical meaning for the Bekenstein–Hawking
entropy. ’t Hooft [4] argued that the black hole entropy is identified with the
quantum entropy arising from a thermal bath of quantum fields propagating
outside the horizon. In order to eliminate the divergence which appears due
to the infinite growth of the density of states close to the horizon, ’t Hooft
introduced a “brick wall” cutoff : a fixed boundary near the event horizon
within the quantum field does not propagate and the Dirichlet boundary
condition is imposed on the boundary. The “brick wall” model (BWM) has
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been successfully used in studies of the quantum entropy for many black
holes [4, 6, 16, 17].

Most work on the quantum entropy of black holes is carried out using
quantum scalar fields. The study of the quantum correction to black hole
entropy due to the electromagnetic field has recently been carried out. By
using the heat-kernel and proper-time regularization, Kabat [23] studied the
entropy for the electromagnetic field case in Rindler space. He obtained an
unexpected surface term which corresponds to particle paths beginning and
ending at the event horizon. This term gives a negative contribution to the
entropy of the system and is large enough to make the total entropy negative
at the equilibrium temperature. However, Iellici and Moretti [24, 25], using
a local z-function regularization approach, proved that the surface term is
gauge dependent in the four-dimensional case and therefore can be discarded.
Recently, Cognola and Lecca [26] used the BWM to study the quantum
entropy for electromagnetic fields in the Schwarzschild and Reissner–
Nordström black hole spacetimes. They found that there is no such surface
term in the BWM, and the leading term of the entropy for the electromagnetic
fields is exactly twice that for a massless scalar field. However, the question
of whether or not the relation for the Schwarzschild and Reissner–Nordström
black holes obtained by Cognola and Lecca is valid for other black holes,
especially for dilaton black holes, remains open. The purpose of this paper
is to settle the question by studying the quantum entropy of the electromag-
netic field in static dilaton black holes.

The paper is organized as follows: In Section 2, we first show that
the electromagnetic field in the four-dimensional static dilaton black hole
spacetimes can be expressed in term of a couple of scalar fields satisfying
Klein–Gordon-like equations. We then get the total number of modes with
energy less than E, and use it to calculate the free energy. The quantum
entropies are then obtained by the variation of the free energy with respect
to inverse temperature. In last section, the results are compared with those
due to the scalar field, and a discussion is presented.

2. ENTROPY OF THE QUANTUM ELECTROMAGNETIC
FIELD IN STATIC, SPHERICALLY SYMMETRIC
DILATON BLACK HOLES

The line element for four-dimensional static, spherically symmetric dila-
ton black holes can be expressed as

ds2 5 gttdt2 1 grrdr 2 1 R1(du2 1 sin2u dw2) (1)

where gtt, grr, and R1 are functions of the coordinate r only. In this paper we
focus on the Garfinkle–Horowitz–Strominger, Gibbons–Maeda, and
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Garfinkle–Horne dilaton black holes. For these black holes we have gtt 5
21/grr 5 2grr [ 2g.

After introducing new coordinates z 5 sin u eiaw/(1 2 cos u) and z 5
sin u e2iaw/(1 2 cos u), we rewrite the line element (1) as

ds2 5 2g dt2 1
1
g

dr 2 1 gzz dz dz (2)

with

gzz 5
2R1

(1 1 zz)2 (3)

We now try to find a quantum entropy expression for electromagnetic
fields in thermal equilibrium at temperature 1/b in static, spherically symmet-
ric dilaton black holes. The partition function is

Z 5 o
nq

exp[2b(Eq)nq] (4)

where q denotes the quantum state of the field with energy Eq. The free
energy is given by [4]

F 5 2
1
b o

n
ln(1 2 e2bE)

5
1
b #

`

0

dn(E ) ln (1 2 e2bE)

5 2
1
b #

`

0

n(E )
ebE 2 1

dE (5)

where n(E ) [ pN, and N is the total number of waves with energy not
exceeding E. In the third line of Eq. (5) we have integrated by parts. In the
following we first look for an expression for n(E ).

Substituting the electromagnetic potential Am into the Maxwell equation

¹i F ij 5 0 (6)

we obtain

MAk 2 ¹i ¹k Ai 5 MAk 2 ¹k ¹i Ai 2 Rki Ai 5 0 (7)

where M 5 gij ¹i ¹j is the D’Alembertian operator, and Rkj is the Ricci
tensor. By using the expression for the Ricci tensor we have [26]

LAi 5 Aji (gklGj
kl) 1 2gklGj

kil Aj 1 i ¹j Aj (8)
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with

L 5
1

!2g
i!2ggij j (9)

Substituting the metric (2) into (8), we obtain

LAt 5
dg
dr 1At

r
2

Ar

t 2 1


t
¹i Ai (10)

LAr 5 2Fd 2g
dr 2 1

d
dr 1g

d ln R1

dr 2G Ar 1 gzz d ln R1

dr 1Az

z
1

Az

z 2
2

1
g2

dg
dr

At

t
2

dg
dr

Ar

r
1



r
¹i Ai (11)

LAz 5 22
gzz

z
Az

z
1 g

d ln R1

dr 1Az

r
2

Ar

z 2 1


z
¹i Ai (12)

LAz 5 22
gzz

z

Az

z
1 g

d ln R1

dr 1Az

r
2

Ar

z 2 1


z
¹i Ai (13)

In order to select the physical degrees of freedom, we fix the gauge condition
At 5 0. Then Eq. (10) gives a constraint condition

¹i Ai 1
dgtt

dr
Ar 5 2

dg
dr

Ar 1
1
R1



r
(R1gAr) 1 gzz1Az

z
1

Az

z 2 5 0 (14)

Using the gauge and the constraint conditions, we can express Eqs. (11)–
(13) as

LAr 5 2
1
R1



r 1g
dR1

dr
Ar2 (15)

1L 1 2
gzz

z


z2Az 5 g
d ln R1

dr
Az

r
1 g

d
dr Fln12g

R1
2G Ar

z
(16)

1L 1 2
gzz

z


z2Az 5 g
d ln R1

dr

Az

r
1 g

d
dr Fln12g

R1
2G Ar

z
(17)

Form Eqs. (15)–(14) we obtain two classes of independent electromag-
netic potentials:
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AI
m 5 10, 0,

1

!2l(l 1 1)v

F1

z
,

21

!2l(l 1 1)v

F1

z 2 (18)

AII
m 5 10, !l(l 1 1)

2v3

F2

R1
,

g

!2l(l 1 1)v3

2F2

zr
,

g

!2l(l 1 1)v3

2F2

zr2 (19)

which show that AI
m and AII

m depend on a couple of scalar functions F1 and
F2, respectively. Since both F1 and F2 satisfy the Klein–Gordon-like equation

MFi 5 g
d ln R1

dr
Fi

r
, i 5 1, 2 (20)

where Fi (t, r, z, z) 5 e2vtfi (r)Y m
l (z, z), hereafter we will drop the subscript

on the Fi. It is interesting to note that the solutions (18) and (19) form a set
of orthonormal eigenfunctions with respect to the scalar product.

We introduce the brick-wall boundary condition in which the wave
function is cut off just outside the event horizon, i.e., F 5 0 at r 5 rH 1 h
(h is a small, positive quantity and signifies an ultraviolet cutoff) and an
infrared cutoff, F 5 0, at r 5 L (L .. rH). When we employ the WKB
approximation and insert the metric (2) into Eq. (20), after discussion as in
ref. 18, we find

n(E ) 5 o
l

(2l 1 1)nr

5
1
p # (2l 1 1) dl #

L

rH1h

1
g !E 2 2

gl(l 1 1)
R1

dr

5
2E 3

3p FR11dg
dr2

22G
rH

1
h

1
2E 3

3p F1dg
dr2

23

1dg
dr

dR1

dr
2 R1

d 2g
dr 22G

rH

ln
L
h

(21)

Since there are two independent scalar fields both satisfying Eq. (20), substi-
tuting Eq. (21) into (5), we find that the free energy at inverse temperature
b can be expressed as

BF 5 2
4p3

45b3 HFR11dg
dr2

22G
rH

1
h

1 F1dg
dr2

23

1dg
dr

dR1

dr
2 R1

d 2g
dr 22G

rH

ln
L
hJ (22)
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If we set d2 5 2e2/15 and L2 5 Le/h as in refs. 17 and 19 (where d 5
*rH1h

rH !grr dr 5 2!(dg/dr)21
rH h is the proper distance from the horizon rH to

rH 1 h, e is the ultraviolet cutoff, and L is the infrared cutoff of Solodukhin
[27, 28]) and note the Hawking inverse temperature, bH 5 [4p(dg/dr)21]rH,
we can rewrite Eq. (22) as

bF 5 2
1
24

R1

e2 1bH

b 2
3

2
R1

360 1bH

b 2
3

1 1
R1

dg
dr

dR1

dr
2

d 2g
dr 22

rH

ln
L
e

(23)

The quantum correction to the entropy of the static dilaton black holes is
given by

Sq
em 5 1b2 F

b2
bH

5
AS

24pe2 2
AS

360p 1d 2g
dr 2 2

1
R1

dg
dr

dR1

dr 2
rH

ln
L
e

(24)

In the above calculations, we ignored the contribution from the vacuum
surrounding the system. We now consider some particular examples.

2.1. The Garfinkle–Horowitz–Strominger Dilatonic Black Hole

The metric of the Garfinkle–Horowitz–Strominger dilatonic black hole
is given by [29]

ds2 5 211 2
2M
r 2 dt2 1

dr 2

1 2 2M/r

1 r(r 2 a)(du2 1 sin2u dw2) (25)

where r+ 5 2M and a 5 (Q2/2M )e22f0. The parameters M and Q represent
the mass and electric charge of the hole, respectively. From Eqs. (24) and
(25) we know that the quantum correction to the entropy of the black hole is

Sq
GHS 5

AH

24pe2 1 1 1
90

1
1
30

AH

r+bH
2 ln 1L

e2 (26)

where AH 5 4pr+(r+ 2 a), bH 5 4pr+, e 5 !30r+h, and L 5 !30r+L.

2.2. The Static Gibbons–Maeda Dilaton Black Hole

The static Gibbons–Maeda dilaton black hole is described by the met-
ric [30]
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ds2 5 2
(r 2 r+)(r 2 r2)

R2 dt2 1
R2 dr 2

(r 2 r+)(r2 r2)
(27)

1 R2(du2 1 sin2u dw2)

with

r6 5 M 6 !M 2 1 D2 2 P2 2 Q2,

D 5 (P2 2 Q2)/2M, (28)

R2 5 r 2 2 D2

The parameters Q and P represent electric charge and magnetic charge,
respectively.

The quantum correction to the entropy in the background of the black
hole can be obtained by using Eqs. (24) and (27), and is explicitly given by

Sq
GM 5

AH

24pe2 1 12
1
45

1
1
15

4pr+

b 2 ln 1L
e2 (29)

where

AH 5 4p(r 2
1 2 D2), bH 5

4p(r 2
1 2 D2)

r+ 2 r2

e 5 !30h
r 2

1 2 D2

r+ 2 r2

, L 5 !30L
r 2

1 2 D2

r+ 2 r2

2.3. The Garfinkle–Horne Dilaton Black Hole

The Garfinkle–Horne dilaton black hole metric in the Einstein–Maxwell
dilaton theory can be expressed as [29, 31]

ds2 5 211 2
r+

r 211 2
r2

r 2
(12a2)/(11a2)

dt2

1 11 2
r+

r 2
21

11 2
r2

r 2
(a221)/(11a2)

dr 2

1 r 211 2
r2

r 2
2a2/(11a2)

(du2 1 sin2u dw2) (30)
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with dilaton field

e2F 5 11 2
r2

r 2
2a/(11a2)

e22F0

and Maxwell field F 5 (Q/r 2) dt ∧ dr. Here a is a coupling constant, and
r 5 r+ is the location of the event horizon. For a 5 0, r 5 r2 is the location
of the inner Cauchy horizon; however, for a . 0 the surface r 5 r2 is
singular. The mass M and charge Q of the black hole are related to parameters
r+ and r2 by

2M 5 r+ 1 11 2 a2

1 1 a22r2, Q2 5
r+r2

1 1 a2 e2aF0 (31)

We know from the metric (30) that the Hawking inverse temperature and the
area of the event horizon can respectively be expressed as

bH 5
2p
k

5
4pr+

(1 2 r2/r+)(12a2)/(11a2)
(32)

AH 5 4pr 2
111 2

r2

r+
2

2a2/(11a2)

(33)

Inserting the metric (30) into relations d2 5 2e2/15 and L2 5 Le2/h, we get

e 5 !15
2 #

r11h

r1

!grr dr 5 !30hr 1/(11a2)
1 (r+ 2 r2)(a221)/2(11a2) (34)

L 5 !30Lr 1/(11a2)
1 (r+ 2 r2)(a221)/2(11a2) (35)

Then, the quantum correction (24) for the black hole can be written as

Sa
GH 5

AH

24pe2 1
1
45 12a2 2 1

1 1 a2 1
3

1 1 a2

AH

r+b2 ln
L
e

(36)

3. DISCUSSION AND CONCLUSION

By comparing results (26), (29), and (36) with Eqs. (34)–(36) in ref.
18, respectively, we know that for the Garfinkle–Horowitz–Strominger,
Gibbons–Maeda, and Garfinkle–Horne dilaton black holes the quantum cor-
rections to the entropies of the black holes arising from electromagnetic fields
are exactly twice those due to massless scalar fields. The entropies (26), (29),
and (36) consist of two parts as usual: a quadratically divergent term and a
logarithmically divergent term. The quadratic part takes the geometric charac-
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ter AH /48pe2, which can be regarded as a renormalization of the gravitational
constant 1/Gren 5 1/G 1 1/(12pe2). The logarithmically divergent term is
not proportional to the horizon area. The term depends on the black hole
characteristics, and therefore cannot be neglected as nonessential additive
constants. The logarithmic divergence can be absorbed in the renormalization
of the coupling constants by using a standard approach [32, 5, 10].

To summary, we first show that by imposing the gauge At 5 0 the
electromagnetic potential Ai in the static dilaton black holes can be expressed
in term of two independent scalar fields. Then, by using ’t Hooft’s BWM
the quantum corrections to the entropies of the static dilaton black holes
arising from the. electromagnetic filed are obtained. The results show that
the entropies are exactly twice those due a massless scalar field. The conclu-
sion agrees with Cognola and Lecca’s, which is obtained in the Schwarzschild
and Reissner–Nordström black hole spacetimes. The renormalization of the
quantum entropies is also discussed briefly.
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